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In this paper, we present a quantization scheme that reconstructs the state

of switched linear systems with a prescribed exponential decaying rate for

the state estimation error. We show how to use the Lyapunov exponents and

a geometric object called Oseledets’ filtration to design such a quantization

scheme. Then, we prove that this algorithm works at an average data-rate

close to the estimation entropy of the given system. Furthermore, we can

choose the average data-rate to be arbitrarily close to the estimation entropy

whenever the switched linear system has the so-called regularity property.

We show that, under the regularity assumption, the quantization scheme is

completely causal in the sense that it only depends on information that is

available at the current time instant. Finally, we present simulation results for

a Markov Jump Linear System, a class of systems for which the realizations

are known to be regular with probability 1.
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1 INTRODUCTION

Nowadays, most dynamic systems found in engineering applica-

tions have distributed components, such as sensors, controllers, and

actuators. For these components to transmit information to each

other, we need to use communication channels. Those communica-

tion channels, by their turn, impose constraints on the data rate that

can be transmitted. Therefore, it is natural to ask what is the mini-

mum data rate needed for us to satisfy the application requirements,

such as being able to reconstruct the system’s state or stabilize the

system.

The answers to the previous questions are invariably related to

some definition of entropy. We can understand entropy as the rate

at which a system generates information related to the studied prob-

lem. Because of that, many authors have proposed several entropy

definitions for each different task, see e.g. [5, 8, 12, 13, 15, 17]. In
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the present paper, we are interested in estimating the state of a

switched linear system with a prescribed exponential decay rate

of 𝛼 ≥ 0 for the estimation error. The entropy concept we use is

called estimation entropy, and its description first appeared in [10]

for generic autonomous nonlinear systems. We can, therefore, think

about the estimation entropy as a rate at which the system generates

uncertainty about the state. However, obtaining the value of the

estimation entropy is only half of the story, because it does not tell

us how to design the coding-estimator scheme to solve the original

problem. The goal of the present paper is to address this issue. We

show how to construct a coding-estimator scheme that operates

with an average data-rate arbitrarily close to the estimation entropy

for switched linear systems.

The research in entropy notions for switched systems has drawn

the attention of several authors in recent years. Thus, a brief liter-

ature review might be helpful to explain the contributions of the

present work and its context. The first paper to explicitly present

an entropy notion for switched systems, related to the estimation

entropy defined in [10], was [18]. Afterward, several distinct meth-

ods were developed to obtain bounds for the value of the entropy

of switched linear systems, see, for instance, [3, 21–24]. Among

these works, [21] provides an inequality that relates Lyapunov ex-

ponents with the estimation entropy, and those authors show that

that expression holds with equality for a large class of switched

linear systems called regular. It should be remarked that a similar

relationship appears in several places in the dynamical systems

literature, often under the name Pesin entropy formula [14, 16, 20],

as well as in control and estimation theory on compact manifolds

[9, 19]. Another relevant work for our discussion is [4]. There, the

authors use entropy notions to describe an algorithm that stabilizes

a switched linear system with an average data-rate arbitrarily close

to the minimal. However, the algorithm presented in [4] requires

us to know an a priori upper bound for the entropy, which might

not be realistic if we want a causal algorithm, as discussed in the

present paper.

In the context above, the current paper can be considered as

extending the work in [21] by providing a constructive and causal

algorithm that builds a state estimate for a switched linear system

with a prescribed exponential decaying rate 𝛼 ≥ 0 for the estimation

error with an average data-rate as close as desired to the estimation

entropy. Moreover, we advocate in favor of the role of regularity

because it allows us to build a quantizer using only what is known

up to a given time instant. Furthermore, the regularity assumption

is fulfilled by several systems of practical interest, such as those

modeled as Markov Jump Linear Systems, as shown in [21].

This paper has the following structure: In section 3, we motivate

our study through an example where the current methods perform

worse than our method presented here. Then, in section 1, we study

the concept of estimation entropy, which will be related to our algo-

rithm’s average data-rate for a particular choice of the algorithm’s
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parameters, giving it an upper bound. Also, that upper-bound is the

exact value of the estimation entropy under the Lyapunov regularity

assumption. Further, we study the concepts of Lyapunov exponents

and Oseledets’ filtration that will be useful when we discuss our

quantization algorithm. In section 5, we present our algorithm in its

most general framework. Then, by utilizing the Oseledets’ filtration

and Lyapunov exponents we show that we can operate at an average

data-rate close to the estimation entropy when we make specific

choices in our algorithm. Furthermore, we present how to make the

algorithm reach the minimal average data-rate in a more realistic

setting for practical applications. Following, in section 6, we present

simulation results for the example-system of section 3. Finally, in

section 7, we draw our conclusions and propose future works.

Notations: Unless otherwise stated, we denote by | | · | | the infinity-
norm in a finite dimensional vector space. Let R = (−∞,∞), let
Z≥0 = {0, 1, . . . } the nonegative integers, and let N = {1, 2, . . . }
the set of natural numbers. For any set 𝐸, we denote by #𝐸 its

cardinality. For subsets of R𝑑 we denote vol(𝐸) the volume of the

set (its Lebesgue measure). Further, we denote by diam(𝐸), where
𝐸 ⊂ R𝑑 the set’s diameter according to the metric induced by the

norm | | · | |. We also denote by dim(𝑉 ) the dimension of a linear

vector space𝑉 . Also, for any 𝑥 > 0, log 𝑥 is the logarithm with base

𝑒 and, for𝑏 > 0, log𝑏 𝑥 is the logarithmwith the base𝑏. Additionally,

we denote by 〈𝑣,𝑤〉, where 𝑣 ∈ R𝑑 and𝑤 ∈ R𝑑 , the usual canonical
inner product of R𝑑 . Furthermore, we say that a basis

{
𝑣𝑖

}𝑑
𝑖=1 for

a finite dimensional vector space 𝑉 is orthonormal if for every 𝑖 ∈{
1, . . . , 𝑑

}
and 𝑗 ∈ {

1, . . . , 𝑑
}
we have that ‖𝑣𝑖 ‖ = 1 and 〈𝑣𝑖 , 𝑣 𝑗 〉 = 0

for 𝑖 ≠ 𝑗 .
We denote by M(𝑑,R) the set of all 𝑑 × 𝑑 matrices over the

reals. We denote det(𝐴) the determinant of the matrix 𝐴. Further,
𝐼𝑑 ∈ M(𝑑,R) is the identity matrix. Additionally, consider the

parallelepiped defined by {𝜅𝑖𝑣𝑖 : 𝜅𝑖 ∈ [0, 1]}, where {𝑣𝑖 }𝑘𝑖=1 ⊂ R𝑑
is a linearly independent set of vectors. We denote the 𝑘-th volume

of the parallelepiped by vol (𝑣1, · · · , 𝑣𝑘 ) and its numerical value is

given by
√
det (𝑉
𝑉 ), where 𝑉 is the 𝑑 × 𝑘 matrix with columns

𝑣𝑖 .
1

2 PRELIMINARIES

Consider the following switched linear system model

�𝑥 (𝑡) = 𝐴𝜎 (𝑡 )𝑥 (𝑡), (1)

where 𝑥 (𝑡) ∈ R𝑑 , 𝜎 : R≥0 → Σ is a switching signal and Σ
is a finite cardinality set, and 𝐴𝜎 (𝑡 ) ∈ M(𝑑,R). We denote by

Φ(𝑡, 𝑡0) the state-transition matrix of (1), i.e. the solution of the

ODE 𝑑
𝑑𝑡 Φ(𝑡, 𝑡0) = 𝐴𝜎 (𝑡 )Φ(𝑡, 𝑡0) with Φ(𝑡0, 𝑡0) = 𝐼𝑑 and 𝑡0 being

the initial time. Furthermore, we will make the assumption that

𝜎 is constant on intervals of the type [𝑡𝑖 , 𝑡𝑖+1) for 𝑖 ∈ Z≥0, where
(𝑡𝑖 )𝑖∈Z≥0 is a strictly increasing sequence of positive times such

that lim sup𝑖→∞ 𝑡𝑖 = ∞. The elements of the sequence (𝑡𝑖 )𝑖∈Z≥0
are called switching times. We also need to define an increasing se-

quence of sampling times (𝜏𝑘 )𝑘∈Z≥0 , with 𝜏𝑘 = 𝑘𝑇𝑝 for all 𝑘 ∈ Z≥0
and some 𝑇𝑝 > 0.

1Notice that interchanging the order of the columns does not change the 𝑘-th volume.

Then, we can rewrite the model described in equation (1) using

its exact discrete-time model, defined by:

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 , (2)

where (𝑥𝑘 )𝑘∈Z≥0 is the state at the sampling times 𝜏𝑘 , i.e. 𝑥𝑘 = 𝑥 (𝜏𝑘 ),
and𝐴𝑘 = Φ(𝜏𝑘+1, 𝜏𝑘 ). We are slightly abusing the notation by using

𝐴 for both the continuous and discrete time matrices, but will make

clear which of the models, (1) or (2), we are using in the text.

Consider the following definitions of coder-estimator scheme,

see for instance [13, 15]. Let {𝜏𝑘 }𝑘∈Z≥0 be the aforedescribed se-

quence of sampling times. Also, let {C𝑛}𝑛∈Z≥0 be a sequence of

alphabets with uniformly bounded cardinality, i.e. ∃𝑀 > 0, #C𝑖 <
𝑀,∀𝑖 ∈ Z≥0. We call the elements 𝑞 of a finite alphabet symbols.

Furthermore, let {𝛾𝑛}𝑛∈Z≥0 be a sequence of functions such that

𝛾𝑛 :
∏𝑛−1

𝑖=0 C𝑖×R𝑑 (𝑛+1) → C𝑛 , where𝛾𝑛 is called the coder mapping

at time 𝑛. We can write the coder mapping in the following more

explicit way2

𝛾0 : 𝑥 (𝜏0) ↦→ 𝑞0,

𝛾𝑛 : (𝑞0, . . . , 𝑞𝑛−1, 𝑥 (𝜏0), . . . , 𝑥 (𝜏𝑛)) ↦→ 𝑞𝑛,

where 𝑞𝑛 ∈ C𝑛 for all 𝑛 ∈ Z≥0 .

The average data-rate of a coder-estimator scheme is defined as

𝑏 � lim sup
𝑗→∞

1

𝑡 𝑗

𝑗∑
𝑖=0

log
(
#C𝑖

)
. (3)

3 EXAMPLE

In this section, we motivate our work through a randomly switched

system example. In this example, we show that the average data-rate

for state estimation taking the switched system dynamics into ac-

count is lower than the one obtained by using the optimal quantizer

for each mode separately whenever that mode is active.

Example 3.1. Let 𝐵1 =

[
0.9 0.03
0 1

]
and 𝐵2 =

[
1.1 0.02
0 1

]
be the

modes of our discrete-time switched system. Notice that the mode

𝐵2 is unstable. Therefore, applying the conventional quantization

scheme [7] that reaches the minimum average data-rate for each

mode separately will use a positive average data-rate. Nonetheless,

we will show that, with probability 1, if our switch comes from

the Markov chain defined by the matrix of transition probabilities

𝑃 =

[
0.1 0.9
0.9 0.1

]
, where 𝑃𝑖 𝑗 is the transition probability from mode 𝑖

to mode 𝑗 , then there exists an algorithm that reconstructs the state

using an average data-rate equal as close to the estimation entropy

as desired with probability 1 in the aforedescribed situation.

In this paper, we will present a quantization scheme that operates

at an average data-rate equal to the estimation entropy for a large

class of switching signals called regular switchings. It so happens

that, with probability 1, the switching signals generated by Markov

Jump Linear Systems, like the one in this example, are in this class.

2Notice that, since 𝑞0 = 𝛾0 (𝑥 (𝜏0)) , one could define 𝛾1 (𝑥 (𝜏0), 𝑥 (𝜏1)) =
𝛾1 (𝛾0 (𝑥 (𝜏0)), 𝑥 (𝜏0), 𝑥 (𝜏1)) . Then, one could define 𝛾𝑛 (𝑥 (𝜏0), . . . , 𝑥 (𝜏𝑛)) recur-
sively in a similar way. Making the explicit dependence of the quantized value on the
previous symbols is a matter of keeping the argumentation clear.
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4 ESTIMATION ENTROPY

In this section, we introduce Lyapunov exponents, Lyapunov reg-

ularity, estimation entropy, and related concepts. Also, we state

a theorem that gives an upper bound for the estimation entropy

of discrete-time switched systems using the Lyapunov exponents.

Furthermore, the theorem states that the upper bound is the actual

value of the estimation entropy when we assume Lyapunov regular-

ity. The definitions presented here were adapted from the references

[11], Chapter 2 of [2], and Chapter 3 of [1].

Throughout this document, given a sequence of invertible matri-

ces (𝐴𝑛)𝑛∈N ⊂ M(𝑑,R), we denote the discrete-time state-transition

matrix of the system (2) by

Φ𝑛 � 𝐴𝑛 · · ·𝐴1 . (4)

We assume that 𝐾 ⊂ R𝑑 , the set of possible initial conditions, is a
compact set with nonempty interior. Further, the solution of (2) at

time step 𝑛 with initial condition 𝑥 ∈ R𝑑 is given by 𝜉 (𝑥, 𝑛) = Φ𝑛𝑥 ,
where the matrix sequence is given by the matrices on the right-

hand side of (2).

For the next definition, pick an 𝛼 ≥ 0, and let 𝑇 ∈ 𝑍≥0 be the

time horizon.

Definition 4.1. For every 𝜖 > 0, we call a finite set of functions

𝑋 = {𝑥1 (·), . . . , 𝑥𝑁 (·)}, from {0, . . . ,𝑇 − 1} to R𝑑 , a (𝑇, 𝜖, 𝛼, 𝐾)-
approximating set if for every initial condition 𝑥 ∈ 𝐾 , there exists

𝑥𝑖 ∈ 𝑋 such that | |𝜉 (𝑥, 𝑛) − 𝑥𝑖 (𝑛) | | < 𝜖𝑒−𝛼𝑛, ∀𝑛 ∈ {0, . . . ,𝑇 − 1}.
Let 𝑠est (𝑇, 𝜖, 𝛼, 𝐾) be the minimum cardinality of a (𝑇, 𝜖, 𝛼, 𝐾)-

approximating set. We define the estimation entropy as

ℎest (𝛼, 𝐾) � lim
𝜖→0

lim sup
𝑇→∞

1

𝑇
log 𝑠est (𝑇, 𝜖, 𝛼, 𝐾) .

Definition 4.2. A Lyapunov index is a function 𝜆 : R𝑑 → R∪{−∞}
with the following properties:

• 𝜆(𝜅𝑣) = 𝜆(𝑣), for every real 𝜅 ≠ 0
• 𝜆(𝑣 +𝑤) = max {𝜆(𝑣), 𝜆(𝑤)}
• 𝜆(0) = −∞

A Lyapunov index 𝜆(·) can take at most 𝑑 distinct real values,

see e.g. [2]. (Note that −∞, which is the value of 𝜆(0), is not a real
value.)

Definition 4.3. The Lyapunov exponent associated with a sequence

of matrices (𝐴𝑛)𝑛∈N is the following Lyapunov index3:

𝜆(𝑣) � lim sup
𝑛→∞

1

𝑛
log ( | |Φ𝑛𝑣 | |) ,

for 𝑣 ∈ R𝑑 \ {0}. Also, we define 𝜆(0) � −∞.

Note that the Lyapunov exponent, 𝜆(·), is a particular Lyapunov
index, see e.g. [2]. Therefore, it can attain at most 𝑑 distinct values.

We denote these values by 𝜒𝑖 , for 𝑖 = 1, . . . , 𝑞, where 𝑞 ≤ 𝑑 , and
we index them according to the increasing order for real numbers,

i.e. 𝜒1 < · · · < 𝜒𝑞 . We call 𝜒𝑖 , 𝑖 = 1, . . . , 𝑞 the Lyapunov exponent

values.

3Note that the function does not change if we change the norm.

Definition 4.4. A filtration (or flag) on R𝑑 is a family of vector

subspaces V = (𝐸𝑖 )𝑞𝑖=0, with 𝑞 ≤ 𝑑 , such that {0} = 𝐸0 � 𝐸1 �

· · · � 𝐸𝑞 = R𝑑 . Further, we call V = {𝑣𝑖 }𝑑𝑖=1 a normal basis of the

filtration V if it is a basis for R𝑑 , and for every 𝑗 ≥ 1, the subset of

V given by {𝑣𝑖 }dim(𝐸 𝑗 )
𝑖=1 is a basis for 𝐸 𝑗 .

A special type of filtration that will be used in the text, and in

our quantization algorithm in section 5, is the Oseledets’ filtration,

which we define next.

Definition 4.5. A filtration V𝜆 associated with the sequence of

invertible matrices (𝐴𝑛)𝑛∈N such that 𝐸𝑖 =
{
𝑣 ∈ R𝑑 : 𝜆(𝑣) ≤ 𝜒𝑖

}
,

where 𝜆(·) is the Lyapunov exponent for the sequence, and 𝜒𝑖 are
the Lyapunov exponent values of the sequence previously defined,

is called an Oseledets’ filtration. Also, the subspaces 𝐸𝑖 ∈ V𝜆 are

called Oseledets’ subspaces. In addition, the following dim(𝐸𝑖 ) −
dim(𝐸𝑖−1) is called the multiplicity of the Lyapunov exponent value

𝜒𝑖 . If
4 dim(𝐸𝑖 ) −dim(𝐸𝑖−1) = 1 for every 𝑖 ∈ {1, . . . , 𝑞}, we say that

the Lyapunov exponents are simple. Finally, define Λ =
{
𝜆 𝑗

}𝑑
𝑗=1

as an ordered list with repetition where for every 𝑗 = 1, . . . , 𝑑 ,
there exists some 𝑖 ∈ {1, . . . , 𝑞} such that 𝜆 𝑗 = 𝜒𝑖 , and for every

𝑖 = 1, . . . , 𝑞, 𝜒𝑖 appears dim(𝐸𝑖 ) − dim(𝐸𝑖−1) times in Λ. The order
in Λ can be any total order relation in the set Λ chosen among those

for which 𝜆1 ≤ · · · ≤ 𝜆𝑑 . We call the elements 𝜆𝑖 ∈ Λ the Lyapunov

exponents with multiplicity of (𝐴𝑛)𝑛∈N.
It is important to remark that the Oseledets’ filtration depends

on the entire sequence (𝐴𝑛)𝑛∈N. To see that, consider the following
example.

Example 4.6. Let 𝐴 =

[
2 0
0 4

]
and 𝐵 =

[
0 1
1 0

]
and notice

that the sequence𝐴′
𝑛 = 𝐴 for all 𝑛 ∈ N, and the sequence𝐴𝑛 = 𝐴 for

𝑛 ∈ N \ {𝑁 } and 𝐴𝑁 = 𝐵 for some 𝑁 ∈ N, have the same Lyapunov

exponents, but different Oseledets’ filtrations. For the Oseledets’s

filtration of the first sequence is 𝐸1 = span
{[

1 0
]
}
� 𝐸2 =

R2 and the filtration of the second is 𝐸1 = span
{[

0 1
]
}
�

𝐸2 = R2.

Definition 4.7. A sequence (𝐴𝑛)𝑛∈N is called tempered if

lim
𝑛→∞

1

𝑛
log | |𝐴𝑛 | | = 0

Notice that, if a sequence (𝐴𝑛)𝑛∈N belongs to a compact set, then

it is tempered. A particular case is the one in which (𝐴𝑛)𝑛∈N has

finitely many values. It is worth mentioning that temperedness does

not imply that the growth rate of Φ𝑛 is sub-exponential. To see why,

take 𝐴𝑛 = 𝑛, which is tempered because lim𝑛→∞ log(𝑛)
𝑛 = 0, and

notice that Φ𝑛 = 𝑛!, which grows faster than any exponential.

Example 4.8 (Example 3.1 revisited.). This is a good moment for us

to revisit our Example 3.1. Denote by 𝑎𝑖 𝑗 (𝑛) the element in the

𝑖-th row and 𝑗-th column of the matrix 𝐴𝑛 , and denote, analo-

gously, by 𝜙𝑖 𝑗 (𝑛) the elements of Φ𝑛 . Further, denote by𝑚𝑖 (𝑛) =∑𝑛
𝑘=1 I(𝐴𝑛)𝑛∈N:𝐴𝑘=𝐵𝑖

((𝐴𝑛)𝑛∈N), where I𝐴 (𝑥) = 1 if 𝑥 ∈ 𝐴 and

4Equivalently, we could say that 𝑑 = 𝑞.
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I𝐴 (𝑥) = 0, otherwise. We should think of 𝑚𝑖 (𝑛) as how many

time instants mode 𝑖 was active until time 𝑛. Note that, 𝜙11 (𝑛) =
0.9𝑚1 (𝑛)1.1𝑚2 (𝑛) , 𝜙22 (𝑛) = 1, and 𝜙12 (𝑛) = 𝑎11 (𝑛)𝜙12 (𝑛 − 1) +
𝑎12 (𝑛) for 𝑛 ≥ 1 with initial conditions 𝜙𝑖𝑖 = 1 and 𝜙𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 .

Now, let {𝑒1, 𝑒2} be the canonical basis for R2. Then, the Lyapunov
exponents of the sequence (𝐴𝑛)𝑛∈N are given by

𝜆(𝑒1) = lim sup
𝑛→∞

1

𝑛
log(‖Φ𝑛𝑒1‖) = lim sup

𝑛→∞
1

𝑛
log(0.9𝑚1 (𝑛)1.1𝑚2 (𝑛) )

= lim sup
𝑛→∞

𝑚1 (𝑛)
𝑛

log(0.9) + 𝑚2 (𝑛)
𝑛

log(1.1).

Recall that the fraction of time that a Markov chain stays on mode

𝑖 is given, with probability 1, by the probabilities 𝜋𝑖 obtained by

solving 𝜋 = 𝜋𝑃 and
∑2
𝑖=1 𝜋𝑖 = 1, where (𝜋1, 𝜋2) = 𝜋 . For this

example, we get that 𝜋1 = 𝜋2 = 1/2. Thus, with probability 1, a

specific realization will have the fractions
𝑚𝑖 (𝑛)

𝑛 converging to the

probabilities 𝜋𝑖 , where 𝑖 ∈ {1, 2}. Hence, 𝜆(𝑒1) = 1
2 log(0.99) < 0.

Finally, we notice that 𝜙12 (𝑛) = 𝑎11 (𝑛)𝜙12 (𝑛 − 1) + 𝑎12 (𝑛) is a
scalar linear time-varying system with an input 𝑎12 (𝑛). Therefore,
if

∏𝑛
𝑗=1 𝑎11 ( 𝑗) < 1 and 𝑎12 (𝑛) are bounded, we prove that 𝜙12 (𝑛)

is bounded. Indeed, 𝑎12 (𝑛) is always bounded and the product∏𝑛
𝑗=1 𝑎11 ( 𝑗) = 0.9𝑚1 (𝑛)1.1𝑚2 (𝑛) can be upper bounded 1. To see

that, take the logarithm of the product and divide it by 𝑛 so that we

get 1
𝑛 log

( ∏𝑛
𝑗=1 𝑎11 ( 𝑗)

)
= 𝑚1 (𝑛)

𝑛 log(0.9) + 𝑚2 (𝑛)
𝑛 log(1.1) < 0.

From which we conclude that
∏𝑛

𝑗=1 𝑎11 ( 𝑗) < 1 and that 𝜙12 is

bounded with probability 1. Now, we can calculate 𝜆(𝑒2) by notic-

ing that ‖Φ𝑛𝑒2‖ = max {𝜙12 (𝑛), 1} is bounded, hence 𝜆(𝑒2) = 0
with probability 1.
Furthermore, we notice that the filtration 𝐸1 = span {𝑒1} � 𝐸2 = R2

is the Oseledets’ filtration. Moreover, we see that {𝑒1, 𝑒2} form a

normal basis for this filtration.

We remark that, although the sequence
(
𝐴𝑛

)
𝑛∈N comes from a

stochastic process, we calculated the values of the Lyapunov expo-

nents for a generic realization. Thus, we always choose a specific

realization, as in the deterministic case. Nonetheless, we use the

Markov chain’s properties to show that our result holds for almost

all realizations of the random process.

Definition 4.9. A sequence (𝐴𝑛)𝑛∈N is called (Lyapunov) regular

if

lim
𝑛→∞

1

𝑛
log ( |det (Φ𝑛) |) =

𝑑∑
𝑖=1

𝜆𝑖 .

We call a system given by equation (2) regular, if its associated

matrix sequence is regular.

The following examples, 4.10 and 4.11, should help illustrate the

concept of regularity.

Example 4.10. Let 𝜌 > 1. Also, let 𝐵1 =

[
𝜌 0
0 𝜌−1

]
and 𝐵2 =[

𝜌−1 0
0 𝜌

]
. Consider the sequence𝐴𝑛 = 𝐵1 if𝑛 ∈ {

2𝑖 , · · · , 2𝑖+1 − 1
}
,

for 𝑖 odd, and 𝐴𝑛 = 𝐵2 otherwise. Note that det ( |Φ𝑛 |) = 1 for

all possible sequences (𝐴𝑛)𝑛∈N. Denote by {𝑒1, 𝑒2} the canonical
basis. Further, consider the subsequence with indices 𝑛𝑘 = 2𝑘

for 𝑘 ∈ N. Then, one can show by induction that
��Φ𝑛𝑘 (𝑒1)�� =

𝜌−
∑𝑘

𝑖=1 (−2)𝑖−1+(−1)𝑘 . Thus,
log

(��Φ𝑛𝑘
(𝑒1)

��)
2𝑘

=
∑𝑘
ℓ=1

((−1)ℓ+1 (2)−ℓ +
(−1)𝑘2−𝑘 ) log(𝜌), after the change of varibles ℓ = −𝑖 + 𝑘 + 1. Now,

looking at the subsequence with indices 𝑛𝑘 = 2𝑘 with 𝑘 even, we

show that this subsequence has a positive limit because:

lim
𝑘→∞

𝑘∑
ℓ=1

(−1)ℓ+1 (2)−ℓ log(𝜌) + (−1)𝑘2−𝑘 log(𝜌) = 1

3
log(𝜌) > 0.

Hence, by the fact that the limit superior is larger than all sublimits,

we conclude that 𝜆(𝑒1) > 0, because it is the limit superior. We can

show the analogous result 𝜆(𝑒2) > 0 by considering the odd values

of 𝑘 . Therefore, the original sequence cannot be regular.

Example 4.11. Let 𝐵1 and 𝐵2 be as in Example 4.10. Consider

the sequence 𝐴𝑛 = 𝐵1 whenever 𝑛 is divisible by 4, and 𝐴𝑛 = 𝐵2

otherwise. Also let {𝑒1, 𝑒2} be the canonical basis for R2. Then one

can check that 𝜆(𝑒1) = − 1
2 log 𝜌 and 𝜆(𝑒2) = 1

2 log 𝜌 . Therefore,
the sequence is regular and {𝑒1, 𝑒2} is a basis for the Oseledets’

filtration.

In Example 4.10, the limit superior in Definition 4.3 of Lyapunov

exponent cannot be replaced by a limit, but in Example 4.11, where

the matrix sequence is regular, it can. This fact is not a coincidence,

as shown by the second bullet of Lemma 4.12, which implies that

the limit exists when the sequence is regular.

The following lemma was extracted from Chapters 3 and 7 of [2]

and it presents equivalent characterizations for regularity that will

be used in this article.

Lemma 4.12. Given a tempered sequence (𝐴𝑛)𝑛∈N of invertible ma-

trices, let {𝑣1, · · · , 𝑣𝑑 } be any normal basis for the Oseledets’ filtration

of the sequence (𝐴𝑛)𝑛∈N, and let I ⊂ {1, · · · , 𝑑} be any set of indices.
Further, let 𝜆𝑖 be the Lyapunov exponents with multiplicity of the

sequence (𝐴𝑛)𝑛∈N. Then, the following conditions are equivalent
• lim𝑛→∞ 1

𝑛 log ( |det (Φ𝑛) |) =
∑𝑑
𝑖=1 𝜆𝑖 ;

• lim𝑛→∞ 1
𝑛 log (vol ({Φ𝑛𝑣𝑖 : 𝑖 ∈ I})) = ∑

𝑖∈I 𝜆𝑖 .

• The matrix lim𝑛→∞
(
Φ

𝑛 Φ𝑛

) 1
2𝑛 exists.

Now, we state the main Theorem of this section.

Theorem 4.13. Let 𝛼 ≥ 0. Let (𝐴𝑛)𝑛∈N be a tempered sequence of

invertible matrices. Let 𝐾 ⊂ R𝑑 be a set of possible initial conditions

with a nonempty interior. Denote by 𝜆𝑖 , with 𝑖 = 1, · · · , 𝑑 , the Lya-
punov exponents with multiplicity of (𝐴𝑛)𝑛∈N. Then, the estimation

entropy of the discrete switched system (2) satisfies:

ℎest (𝛼, 𝐾) ≤
𝑑∑
𝑖=1

max {0, 𝜆𝑖 + 𝛼} , (5)

with equality if the system is regular.

A proof of this theorem can be found in [21].

Remark 4.1. It seems logical to draw a parallel between the bound

presented above and the bounds presented in [24]. The bounds obtained

in that paper rely on the individual modes and their activation times.

On the other hand, the result in Theorem 4.13 uses information about

the entire switching signal given by the Lyapunov exponents. That is

why the bounds in Theorem 4.13, although much harder to compute,

are generally tighter than the ones presented in [24].
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Example 4.14. [Example 3.1 revisited] Now, we can analyse Ex-

ample 3.1 again. From our calculations in section 2, we saw that the

Lyapunov exponents of our system are 𝜆(𝑒1) = 1
2 log(0.99) < 0

and 𝜆(𝑒2) = 0 with probability 1. From this, we conclude that the

system’s estimation entropy satisfies the inequality ℎest (𝛼, 𝐾) ≤
max

{
1
2 log(0.99) + 𝛼, 0

} +max {𝛼, 0} with probability 1.

5 QUANTIZATION ALGORITHM

In this section, we describe the quantization algorithm. This algo-

rithm’s goal is to estimate the state of system (2), with a desired

exponential decay rate for the estimation error, using quantized mea-

surements. The algorithm works by giving an over-approximation

to the reachable set that depends on a few parameters such as the set

of possible initial conditions, the switching signal, and the desired

exponential decay for the estimation error. Also, we need to provide

a family of bases V𝑗 =
{
𝑣
𝑗
1, . . . , 𝑣

𝑗
𝑑

}
, 𝑗 ∈ Z≥0 for R𝑑 . Using this

family, the proposed algorithm generates an over-approximation

for the reachable set. Then, we show that by using a proper choice

of family
(V𝑗

)
𝑗 ∈Z≥0 the algorithm’s average data-rate can be made

as close to the estimation entropy of our system as desired. Finally,

we present a way of generating a family
(V𝑗

)
𝑗 ∈Z≥0 that makes the

algorithm achieve an average data-rate arbitrarily close to the esti-

mation entropy online, assuming that the switching signal is known.

Also, throughout this section, we will let 𝑇𝑝 > 0 be a sampling time

and the sequence (𝐴𝑛)𝑛∈N corresponds to the exact discrete-time

model of some continuous-time model described by equation (1), i.e.

𝐴𝑛 = Φ(𝑇𝑝𝑛,𝑇𝑝 (𝑛 − 1)).

5.1 The Algorithm

In this Subsection, we describe a quantization scheme for switched

linear systems under the assumption that we know 𝜎 (𝑡) for all val-
ues of 𝑡 ∈ R≥0. Under the hypothesis that model (2) holds, the

previous assumption becomes the hypothesis of knowing the se-

quence (𝐴𝑛)𝑛∈N. We also assume that we are given an arbitrary

family of orthonormal5 bases V 𝑗 for R𝑑 . After our scheme’s de-

scription, we show that, under a particular choice of the family

V 𝑗 , our algorithm can operate at an average data-rate arbitrarily

close to the upper bound for the estimation entropy obtained in

Theorem 4.13, i.e.
∑𝑑
𝑖=1 {𝜆𝑖 + 𝛼, 0}. Moreover, for the case where

our system is known to be regular, again because of Theorem 4.13,

the algorithm can operate at an average data-rate arbitrarily close

to the estimation entropy.

Before we provide an informal description of the algorithm, we

need to define some concepts. First, we define ℓ to be a positive

integer that we call block length. Second, let 𝑗 be a positive integer
that indexes our algorithm’s iteration. Also, we need to mention that

our informal description is only valid for time 𝑡 greater than zero

since the initial case is slightly different because of how we initialize

the algorithm. Nonetheless, the logic is essentially the same. In

words, the algorithm does the following: Let the initial state 𝑥 be

inside the region 𝐵 𝑗−1, a parallelepiped in R𝑑 . Given a basis
{
𝑣
𝑗
𝑖

}𝑑
𝑖=1

from the familyV 𝑗 , build a new parallelepiped 𝐵 𝑗 with sides parallel

5We omit the orthonormal from this point onward.

to the 𝑣
𝑗
𝑖 ’s that contains 𝐵 𝑗−1. Now, we flow 𝐵 𝑗 forward using Φ𝑗ℓ+1

and denote it by 𝐵 𝑗 . More preceisely, we define 𝐵 𝑗 = Φ𝑗 ℓ+1 (𝐵 𝑗 ).
Note that, since 𝑥 belongs to 𝐵 𝑗−1 and 𝐵 𝑗−1 ⊂ 𝐵 𝑗 , we have that the

state at the current time 𝑗ℓ + 1, i.e. 𝜉 (𝑥, 𝑗ℓ + 1), belongs to 𝐵 𝑗 . Inside

the set 𝐵 𝑗 , we have quantization subregions, each corresponding to

a distinct quantization symbol. We denote by 𝑞 𝑗 the quantization

symbol corresponding to the quantization subregion that contains

𝜉 (𝑥, 𝑗ℓ + 1). Next, we flow the previous quantization subregion, that

corresponds to the symbol 𝑞 𝑗 , backwards by Φ𝑗ℓ+1 and define the

result to be 𝐵 𝑗 . Finally, we repeat the procedure.

We emphasize that the bases
{
𝑣
𝑗
𝑖

}𝑑
𝑖=1

with 𝑗 ∈ Z≥0 are, in prin-

ciple, arbitrary. By that, we mean that our quantization algorithm

works for any choice of the family of bases at the possible cost of

working at a higher average data-rate. However, we show in Corol-

lary 5.2 and Theorem 5.3 how to choose those bases so that the

average data-rate will approach the estimation entropy. Further, it is

worth emphasizing that we build our estimates using measurements

that happen only at time instants 𝑡 = 𝑗ℓ + 1 with 𝑗 ∈ Z≥0 and at the

initial time 𝑡 = 0. The idea of using the block length was borrowed

from the block coding approach6, and it allows the average data-rate

to approach the estimation entropy arbitrarily close in some specific

cases.

In what follows, we assume thatR𝑑 is endowedwith the canonical

inner product 〈·, ·〉.
Quantizer algorithm

Initialization: Let 𝐾 be the set of possible initial conditions,

𝑥 ∈ 𝐾 be the true initial condition, 𝜖 > 0 a prescribed precision,

𝑇𝑝 > 0 the sampling time, and ℓ ∈ N be the block length. Also,

consider the sequence (𝐴𝑛)𝑛∈N, where7 𝐴𝑛 = Φ(𝑇𝑝𝑛,𝑇𝑝 (𝑛 − 1))
and Φ𝑛 = 𝐴𝑛 . . . 𝐴1. Further, let V𝑗 =

{
𝑣
𝑗
1, . . . , 𝑣

𝑗
𝑑

}
, 𝑗 ∈ Z≥0 be

a family of orthonormal bases for R𝑑 . We define Γ0𝑖 = 1 for all

𝑖 ∈ {1, . . . , 𝑑}. If the system is known to be regular, set Γ
𝑗
𝑖 �

max𝑘∈{0,...,ℓ−1}
���Φ𝑗ℓ−𝑘𝑣

𝑗
𝑖

���, otherwise
Γ
𝑗
𝑖 � max

{
max

𝑘∈{0,...,ℓ−1}

���Φ𝑗 ℓ−𝑘𝑣
𝑗
𝑖

��� , 𝑒𝑇𝑝 (𝜆𝑖+𝛿) 𝑗ℓ , 𝑒𝑇𝑝 (𝜆𝑖+𝛿) ( ( 𝑗−1)ℓ+1)
}

for a prescribed 𝛿 > 0 and8 𝜆𝑖 � lim sup𝑗→∞ 1
𝑗 log

(
| |Φ𝑗𝑣

𝑗
𝑖 | |

)
.

Also, let 𝛼 ≥ 0 be the prescribed exponential decay rate for the

estimation error.

Step 0:

In this step, we define an estimate 𝑥 (0) for 𝜉 (𝑥, 0) = 𝑥 .

• Define 𝐵0 =
{∑𝑑

𝑖=1 𝛾𝑖𝑣
0
𝑖 : 𝜅0𝑖 ≤ 𝛾𝑖 < 𝜅0𝑖

}
, where 𝜅0𝑖 and 𝜅0𝑖

are such that 𝐵0 is the smallest set of such type that contains

the initial set 𝐾 .

6See e.g. Chapter 5 of [6].
7Note that (𝐴𝑛)𝑛∈N ⊂ M(𝑑,R) might be an infinite set in general.
8Notice that these 𝜆𝑖 ’s are not the same as the Lyapunov exponents with multiplicity

since the 𝑣 𝑗𝑖 ’s are not a normal basis for the Oseledets’ filtration in principle.
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• Write 𝜉 (𝑥, 0) = ∑𝑑
𝑖=1 𝛽0𝑖 𝑣0𝑖 . Then, the symbol related to the

quantized value of 𝜉 (𝑥, 0) is given by 𝑞0 =
(
𝑞01, . . . , 𝑞

0
𝑑

)
, con-

structed as follows. Define C0
𝑖 �

{
1, . . . ,

⌈
𝑑
𝜅0
𝑖 −𝜅0

𝑖
𝜖

⌉}
. We de-

fine 𝑞0𝑖 , for every 𝑖 ∈ {1, . . . , 𝑑}, as the 𝑘 ∈ C0
𝑖 such that

𝛽0𝑖 ∈
[
𝜅0𝑖 + 𝜖

𝑑
(𝑘 − 1), 𝜅0𝑖 + 𝜖

𝑑
𝑘
)

holds true.

• Denote 𝛽0𝑖 � 𝜅0𝑖 + 𝜖
𝑑

(
𝑞0𝑖 − 1/2) . Our estimate for the state

at the moment 𝑡 = 0 is

𝑥 (0) �
𝑑∑
𝑖=1

(
𝜅0𝑖 + 𝜖

𝑑

(
𝑞0𝑖 − 1/2

))
𝑣0𝑖 .

We could describe this step 0 in words as follows. 𝐵0 is divided

into cubic boxes with sides of length 𝜖/𝑑 ; 𝑞0𝑖 encodes the position of

the box in the 𝑖-th dimension that contains 𝑥 ; and 𝑥 (0) is the center
of this box.

Step 1:

In this step, we define an estimate 𝑥 (𝑡) for 𝜉 (𝑥, 𝑡) with 1 ≤
𝑡 ≤ ℓ . Notice that we generated a box

𝐵0 �

{
𝑑∑

𝑘=1

𝜇𝑘𝑣
0
𝑘 : 𝜅0𝑘 + 𝜖

𝑑
(𝑞0𝑘 − 1) ≤ 𝜇𝑘 < 𝜅0𝑘 + 𝜖

𝑑
𝑞0𝑘

}

at the end of Step 0 and that 𝑥 ∈ 𝐵0. Now, in this step, we

generate the smallest box aligned with the new basis
{
𝑣1𝑖

}𝑑
𝑖=1

that contains 𝐵0. This box takes the form

𝐵1 �

{
𝑑∑
𝑖=1

𝛾𝑖𝑣
1
𝑖 : 𝜅1𝑖 ≤ 𝛾𝑖 < 𝜅1𝑖

}
.

To compute the bounds 𝜅1𝑖 and 𝜅1𝑖 , let 𝑦 =
∑𝑑
𝑘=1 𝜇𝑘𝑣

0
𝑘
be an

arbitrary point in 𝐵0. Thus, its coordinate relative to each 𝑣1𝑖
is

𝛾𝑖 = 〈
𝑑∑

𝑘=1

𝜇𝑘𝑣
0
𝑘 , 𝑣

1
𝑖 〉 =

𝑑∑
𝑘=1

𝜇𝑘 〈𝑣0𝑘 , 𝑣1𝑖 〉.

Hence, to find the smallest such box, we need to take

𝜅1𝑖 �min
{ 𝑑∑
𝑘=1

𝜇𝑘 〈𝑣0𝑘 , 𝑣1𝑖 〉 :

𝜅0𝑘 + 𝜖

𝑑

(
𝑞0𝑘 − 1

)
≤ 𝜇𝑘 ≤ 𝜅0𝑘 + 𝜖

𝑑
𝑞0𝑘 , 𝑘 = 1, . . . , 𝑑

}
,

for every 𝑖 ∈ {1, . . . , 𝑑}.Notice that this is a linear program-

ming problem. Therefore, the solution will occur at the bound-

ary. Moreover, this set of inequalities forms a box, and we

only need to check its vertices to find the optimal value. The

upper bounds, 𝜅1𝑖 , are defined similarly but with max instead

of min. Finally, we define the box

𝐵1 �

{
𝑑∑
𝑖=1

𝛾𝑖Φ1𝑣
1
𝑖 : 𝜅1𝑖 ≤ 𝛾𝑖 < 𝜅1𝑖

}

by flowing the box 𝐵1 forward by Φ1. We can write the pro-

cedure of this step in the following itemized way.

• Define 𝐵1 �
{∑𝑑

𝑖=1 𝛾𝑖Φ1𝑣
1
𝑖 : 𝜅1𝑖 ≤ 𝛾𝑖 < 𝜅1𝑖

}
, where 𝜅1𝑖 is ob-

tained as described above, and 𝜅1𝑖 is obtained in an analogous

fashion by changing min by max.

• Write 𝜉 (𝑥, 1) =
∑𝑑
𝑖=1 𝛽1𝑖 Φ1𝑣

1
𝑖 . Then, the symbol related to

the quantized value of 𝜉 (𝑥, 1) is given by 𝑞1 =
(
𝑞11, . . . , 𝑞

1
𝑑

)
.

Define C1
𝑖 �

{
1, . . . ,

⌈
𝑑Γ1𝑖 𝑒𝑇𝑝𝛼ℓ

𝜅1
𝑖 −𝜅1

𝑖
𝜖

⌉}
. We define 𝑞1𝑖 , for

every 𝑖 ∈ {1, . . . , 𝑑}, as the 𝑘 ∈ C1
𝑖 such that

𝛽1𝑖 ∈
[
𝜅1𝑖 + 𝜖

𝑑

𝑒−𝑇𝑝𝛼ℓ

Γ1𝑖
(𝑘 − 1), 𝜅1𝑖 + 𝜖

𝑑

𝑒−𝑇𝑝𝛼ℓ

Γ1𝑖
𝑘

)

holds true.

• Denote by 𝛽1𝑖 = 𝜅1𝑖 + 𝜖
𝑑
𝑒−𝑇𝑝𝛼ℓ

Γ1𝑖
(𝑞1𝑖 −1/2). Our estimate for the

state at the moments 1 ≤ 𝑡 ≤ ℓ is

𝑥 (𝑡) �
𝑑∑
𝑖=1

𝛽1𝑖 Φ𝑡𝑣
1
𝑖 .

Step j+1:

In this step, we define an estimate 𝑥 (𝑡) for 𝜉 (𝑥, 𝑡) with 𝑗ℓ+1 ≤
𝑡 ≤ ( 𝑗 + 1)ℓ . Notice that we generated a box

𝐵 𝑗 �
{ 𝑑∑
𝑘=1

𝜇𝑘𝑣
𝑗
𝑘
:𝜅

𝑗
𝑘
+ 𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑘

(𝑞 𝑗
𝑘
− 1) ≤

𝜇𝑘 < 𝜅
𝑗
𝑘
+ 𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑘

𝑞
𝑗
𝑘

}

at the end of Step 𝑗 and that 𝑥 ∈ 𝐵 𝑗 . Now, in this step, we gen-

erate the smallest box aligned with the new basis
{
𝑣
𝑗+1
𝑖

}𝑑
𝑖=1

that contains 𝐵 𝑗 . We define this smallest box as

𝐵 𝑗+1 =

{
𝑑∑
𝑖=1

𝛾𝑖𝑣
𝑗+1
𝑖 : 𝜅

𝑗+1
𝑖 ≤ 𝛾𝑖 < 𝜅

𝑗+1
𝑖

}
,

and obtain 𝜅
𝑗+1
𝑖 and 𝜅

𝑗+1
𝑖 in an analogous manner as we

obtained 𝜅1𝑖 and 𝜅1𝑖 in step 1. Observe that the box 𝐵 𝑗+1
contains the initial state 𝑥 by construction. Finally, we define

the box 𝐵 𝑗+1 as the box obtained after flowing 𝐵 𝑗+1 forward

byΦ𝑗 ℓ+1. We describe the procedure in the following itemized

way.

• Define

𝐵 𝑗+1 =

{
𝑑∑
𝑖=1

𝛾𝑖Φ𝑗ℓ+1𝑣 𝑗+1𝑖 : 𝜅
𝑗+1
𝑖 ≤ 𝛾𝑖 < 𝜅

𝑗+1
𝑖

}
,

where

𝜅
𝑗+1
𝑖 � min

{
𝑑∑

𝑘=1

𝜇𝑘 〈𝑣 𝑗𝑘 , 𝑣
𝑗+1
𝑖 〉 : 𝜅 𝑗

𝑘
+ 𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑘

(
𝑞
𝑗
𝑘
− 1

)
≤

𝜇𝑘 ≤ 𝜅
𝑗
𝑘
+ 𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑘

𝑞
𝑗
𝑘
, 𝑘 = 1, . . . , 𝑑

}
,

𝜅
𝑗+1
𝑖 is obtained in an analogous fashion by changing min by

max.
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• Write 𝜉 (𝑥, 𝑗ℓ + 1) = ∑𝑑
𝑖=1 𝛽

𝑗+1
𝑖 Φ𝑗 ℓ+1𝑣 𝑗+1𝑖 . Then, the symbol

related to the quantized value of 𝜉 (𝑥, 𝑗ℓ+1) is given by 𝑞 𝑗+1 =(
𝑞
𝑗+1
1 , . . . , 𝑞

𝑗+1
𝑑

)
. Let

C 𝑗+1
𝑖 =

{
1, . . . ,

⌈
𝑑𝑒𝑇𝑝𝛼 ( 𝑗+1)ℓΓ 𝑗+1𝑖

𝜅
𝑗+1
𝑖 − 𝜅

𝑗+1
𝑖

𝜖

⌉}
.

We define 𝑞
𝑗+1
𝑖 as the 𝑘 ∈ C 𝑗+1

𝑖 such that

𝛽
𝑗+1
𝑖 ∈

[
𝜅
𝑗+1
𝑖 + 𝜖

𝑑

𝑒−𝑇𝑝𝛼 ( 𝑗+1)ℓ

Γ
𝑗+1
𝑖

(𝑘 − 1), 𝜅 𝑗+1
𝑖 + 𝜖

𝑑

𝑒−𝑇𝑝𝛼 ( 𝑗+1)ℓ

Γ
𝑗+1
𝑖

𝑘

)

holds true.

• Denote by 𝛽
𝑗+1
𝑖 = 𝜅

𝑗+1
𝑖 + 𝜖

𝑑
𝑒−𝑇𝑝𝛼 ( 𝑗+1)ℓ

Γ 𝑗+1
𝑖

(𝑞 𝑗+1
𝑖 −1/2). Then, our

state estimate for the time instants 𝑗ℓ + 1 ≤ 𝑡 ≤ ( 𝑗 + 1)ℓ is
𝑥 (𝑡) � ∑𝑑

𝑖=1 𝛽
𝑗+1
𝑖 Φ𝑡𝑣

𝑗+1
𝑖 .

The following Theorem 5.1 shows that our algorithm from section

5.1 generates a coding scheme that allows us to reconstruct a state

estimate with an exponentially decaying error, and gives an upper

bound on the average data-rate that the algorithm uses.

Theorem 5.1. Let (𝐴𝑛)𝑛∈N be a sequence of matrices that comes

from the exact discretization of the system (1) with sampling time

𝑇𝑝 > 0. Then, the algorithm from section 5.1 gives a sequence of

estimates (𝑥 (𝑡))𝑡 ∈Z≥0 such that | |𝑥 (𝑡) − 𝜉 (𝑥, 𝑡) | | ≤ 𝜖
2𝑒−𝑇𝑝𝛼𝑡 . Further,

the average data-rate of the agorithm from section 5.1 is given by

𝑏 = lim sup𝑗→∞ 1
𝑇𝑝𝑡ℓ

∑𝑡
𝑗=0 log

(
#C 𝑗 ) , with C 𝑗 �

∏𝑑
𝑖=1 C

𝑗
𝑖 and

#C 𝑗 �
∏𝑑

𝑖=1 #C 𝑗
𝑖 , where #C 𝑗+1

𝑖 ≤
⌈
𝑒𝑇𝑝𝛼ℓ

Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
���⌉

for 𝑗 ∈ Z≥0 and#C0
𝑖 ≤

⌈
𝑑 diam(𝐵0)

𝜖

⌉
.

Proof. Step 0:

Recall that
���𝛽0𝑖 − 𝛽0𝑖

��� ≤ 𝜖/2𝑑 by construction. Then,

| |𝑥 (0) − 𝜉 (𝑥, 0) | | =
�����
�����
𝑑∑
𝑖=1

(
𝛽0𝑖 − 𝛽0𝑖

)
𝑣0𝑖

�����
����� ≤ 𝜖

2

and#C0
𝑖 �

⌈
𝑑
𝜅0
𝑖 −𝜅0

𝑖
𝜖

⌉
≤

⌈
𝑑 diam(𝐵0)

𝜖

⌉
. Finally, notice that 𝑥 ∈ 𝐵0.

Step 1:

We need to show that

Φ1

(
𝐵0

)
=

{
𝑑∑
𝑖=1

𝛾𝑖Φ1𝑣
0
𝑖 : 𝜅0𝑖 + 𝜖

𝑑
(𝑞0𝑖 − 1) ≤ 𝛾𝑖 < 𝜅0𝑖 + 𝜖

𝑑
𝑞0𝑖

}
⊂ 𝐵1 .

Take 𝑦 ∈ 𝐵0 and write it as 𝑦 =
∑𝑑
𝑘=1 𝑦𝑘𝑣

0
𝑘
and 𝜅0

𝑘
+ 𝜖

𝑑 (𝑞0𝑘 − 1) ≤
𝑦𝑘 ≤ 𝜅0

𝑘
+ 𝜖

𝑑 𝑞0
𝑘
for 𝑘 ∈ {1, . . . , 𝑑}. Now, rewriting

𝑦 =
𝑑∑
𝑖=1

( 𝑑∑
𝑘=1

𝑦𝑘 〈𝑣0𝑘 , 𝑣1𝑖 〉
)
𝑣1𝑖 ,

we can check that 𝜅1𝑖 ≤
(∑𝑑

𝑘=1 𝑦𝑘 〈𝑣0𝑘 , 𝑣1𝑖 〉
)
≤ 𝜅1𝑖 by definition. This

implies that Φ1
(
𝐵0

) ⊂ 𝐵1.

Now, we need to find an estimate for #C1
𝑖 . First, let (𝛾11, . . . , 𝛾

1
𝑑
)

be any argument of theminimum corresponding to theminimization

used to define 𝜅1𝑖 , and let (𝛾11, . . . , 𝛾1𝑑 ) be any argument of the maxi-

mum corresponding to the maximization used to define 𝜅1𝑖 . Next, no-

tice that
��𝜅1𝑖 − 𝜅1𝑖

�� = ���∑𝑑
𝑘=1

(
𝛾1𝑘 − 𝛾1

𝑘

)
〈𝑣0
𝑘
, 𝑣1𝑖 〉

��� ≤ 𝜖
𝑑

∑𝑑
𝑘=1

���〈𝑣0𝑘 , 𝑣1𝑖 〉
���,

because
���𝛾1𝑘 − 𝛾1

𝑘

��� ≤ 𝜖/𝑑 by definition. Thus,

#C1
𝑖 ≤

⌈
Γ1𝑖 𝑒𝑇𝑝𝛼ℓ

𝑑∑
𝑘=1

��〈𝑣0𝑘 , 𝑣1𝑖 〉��
⌉
.

Further, by the definition of 𝛽1𝑖 and 𝛽1𝑖 , we have that
���𝛽1𝑖 − 𝛽1𝑖

��� ≤
𝜖
2𝑑

𝑒−𝑇𝑝𝛼ℓ

Γ1𝑖
. Then, for 1 ≤ 𝑡 ≤ ℓ

| |𝑥 (𝑡) − 𝜉 (𝑥, 𝑡) | | =
�����
�����
𝑑∑
𝑖=1

(
𝛽1𝑖 − 𝛽1𝑖

)
Φ𝑡𝑣

1
𝑖

�����
����� ≤ 𝜖

2𝑑
𝑒−𝑇𝑝𝛼ℓ

�����
�����
𝑑∑
𝑖=1

Φ𝑡𝑣
1
𝑖

Γ1𝑖

�����
�����

≤ 𝜖

2
𝑒−𝑇𝑝𝛼𝑡 ,

where the last inequality comes from the facts that

����
����Φ𝑡 𝑣

1
𝑖

Γ1𝑖

����
���� ≤ 1 and

1 ≤ 𝑡 ≤ ℓ . Finally, notice that 𝑥 ∈ 𝐵1 because
∑𝑑
𝑖=1 𝛽1𝑖 𝑣1𝑖 ∈ 𝐵1 by

construction.

Step j+1:

By our induction hypothesis, we have that 𝑥 ∈ 𝐵 𝑗 . We need to

show that

Φ𝑗 ℓ+1
(
𝐵 𝑗

)
=

{
𝑑∑
𝑖=1

𝛾𝑖Φ𝑗 ℓ+1𝑣 𝑗𝑖 : 𝜅
𝑗
𝑖 +

𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑖

(𝑞 𝑗
𝑖 − 1) ≤ 𝛾𝑖

< 𝜅
𝑗
𝑖 +

𝜖

𝑑

𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ
𝑗
𝑖

𝑞
𝑗
𝑖

}
⊂ 𝐵 𝑗+1 .

Take 𝑦 ∈ 𝐵 𝑗 and write it as 𝑦 =
∑𝑑
𝑘=1 𝑦𝑘𝑣

𝑗
𝑘
and 𝜅

𝑗
𝑘
+ 𝜖

𝑑
𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ 𝑗
𝑖

(𝑞 𝑗
𝑘
−

1) ≤ 𝑦𝑘 ≤ 𝜅
𝑗
𝑘
+ 𝜖

𝑑
𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ 𝑗
𝑖

𝑞
𝑗
𝑘
for 𝑘 ∈ {1, . . . , 𝑑}. Now, rewriting

𝑦 =
𝑑∑
𝑖=1

( 𝑑∑
𝑘=1

𝑦𝑘 〈𝑣 𝑗𝑘 , 𝑣
𝑗+1
𝑖 〉

)
𝑣
𝑗+1
𝑖 ,

we can check that𝜅
𝑗+1
𝑖 ≤

( ∑𝑑
𝑘=1 𝑦𝑘 〈𝑣 𝑗𝑘 , 𝑣

𝑗+1
𝑖 〉

)
≤ 𝜅

𝑗+1
𝑖 by definition.

This implies that Φ𝑗ℓ+1
(
𝐵 𝑗 ) ⊂ 𝐵 𝑗+1.

Now,we need to find an estimate for#C 𝑗+1
𝑖 . First, let (𝛾 𝑗+1

1
, . . . , 𝛾

𝑗+1
𝑑

)
be any argument of theminimum corresponding to theminimization

used to define 𝜅
𝑗+1
𝑖 , and let (𝛾 𝑗+1

1 , . . . , 𝛾
𝑗+1
𝑑

) be any argument of the

maximum corresponding to the maximization used to define 𝜅
𝑗+1
𝑖 .

Next, notice that
���𝜅 𝑗+1
𝑖 − 𝜅

𝑗+1
𝑖

��� = ���∑𝑑
𝑘=1

(
𝛾
𝑗+1
𝑘

− 𝛾
𝑗+1
𝑘

)
〈𝑣 𝑗
𝑘
, 𝑣

𝑗+1
𝑖 〉

��� ≤
𝜖
𝑑
𝑒−𝑇𝑝𝛼ℓ

Γ 𝑗
𝑖

∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
���, because ���𝛾 𝑗+1

𝑘
− 𝛾

𝑗+1
𝑘

��� ≤ 𝜖
𝑑
𝑒−𝑇𝑝𝛼 𝑗ℓ

Γ 𝑗
𝑖

by def-

inition. Thus,#C 𝑗+1
𝑖 ≤

⌈
𝑒𝑇𝑝𝛼ℓ

Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
���⌉.
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Further, by the definition of 𝛽
𝑗+1
𝑖 and 𝛽

𝑗+1
𝑖 , we have that

���𝛽 𝑗+1
𝑖 − 𝛽

𝑗+1
𝑖

��� ≤ 𝜖

2𝑑

𝑒−𝑇𝑝𝛼 ( 𝑗+1)ℓ

Γ
𝑗+1
𝑖

.

Then, for 𝑗ℓ + 1 ≤ 𝑡 ≤ ( 𝑗 + 1)ℓ

| |𝑥 (𝑡) − 𝜉 (𝑥, 𝑡) | | =
�����
�����
𝑑∑
𝑖=1

(
𝛽
𝑗+1
𝑖 − 𝛽

𝑗+1
𝑖

)
Φ𝑡𝑣

𝑗+1
𝑖

�����
����� ≤

𝜖

2𝑑
𝑒−𝑇𝑝𝛼 ( 𝑗+1)ℓ

�����
�����
𝑑∑
𝑖=1

Φ𝑡𝑣
𝑗+1
𝑖

Γ
𝑗+1
𝑖

�����
����� ≤ 𝜖

2
𝑒−𝑇𝑝𝛼𝑡 ,

where the last inequality comes from the facts that

����
����Φ𝑡 𝑣

𝑗+1
𝑖

Γ 𝑗+1
𝑖

����
���� ≤ 1

and 𝑗ℓ + 1 ≤ 𝑡 ≤ ( 𝑗 + 1)ℓ . Finally, notice that 𝑥 ∈ 𝐵 𝑗+1 because∑𝑑
𝑖=1 𝛽

𝑗+1
𝑖 𝑣

𝑗+1
𝑖 ∈ 𝐵 𝑗+1 by construction. �

It is important to remark that, ifV = {𝑣1, . . . , 𝑣𝑑 } is a normal basis

for the Oseledets’s filtration of a tempered matrix sequence
(
𝐴 𝑗

)
𝑗 ∈N

and V𝑗 = V , i.e. 𝑣
𝑗
𝑖 = 𝑣𝑖 for 𝑗 ∈ Z≥0 and every 𝑖 ∈ {1, . . . , 𝑑}.

Then,
∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
��� = 1 and 𝜆𝑖 = lim sup𝑗→∞ 1

𝑗 log
(���Φ𝑗𝑣

𝑗
𝑖

���) =
lim sup𝑗→∞ 1

𝑗 log
(��Φ𝑗𝑣𝑖

��) , i.e. 𝜆𝑖 ’s will be the Lyapunov exponents
with multiplicity. We know that for every 𝜂 > 0, there exists 𝑁 ∈ N
such that ∀𝑗 ≥ ⌈𝑁−1

ℓ + 1
⌉
and all 𝑖 ∈ {1, . . . , 𝑑}, we have that

‖𝜙𝑡𝑣𝑖 ‖ ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂)𝑡 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝛿+𝜂)𝑡 for all 𝑡 ≥ 𝑁 and this 𝛿 is the

same as the one used in the definition of Γ
𝑗
𝑖 in the algorithm from

section 5.1. Further, we know that for 𝜂 > 0 sufficiently small,

𝜆𝑖 + 𝛿 + 𝜂 < 0 for all 𝜆𝑖 + 𝛿 < 0 with 𝑖 ∈ {1, . . . , 𝑑}. There-
fore, for 𝑗 ≥ ⌈𝑁−1

ℓ + 1
⌉
we have that max{0,...,ℓ−1}

{��𝜙 𝑗ℓ−𝑘𝑣𝑖
��} ≤

max
{
𝑒𝑇𝑝 (𝜆𝑖+𝛿+𝜂) 𝑗ℓ , 𝑒𝑇𝑝 (𝜆𝑖+𝛿+𝜂) ( ( 𝑗−1)ℓ+1)

}
.

Hence, for all 𝑖 ∈ {1, . . . , 𝑑}, if 𝜆𝑖 + 𝛿 < 0, we have that Γ
𝑗
𝑖 =

𝑒𝑇𝑝 (𝜆𝑖+𝛿) ( ( 𝑗−1)ℓ+1) , ∀𝑗 ≥ ⌈𝑁−1
ℓ + 1

⌉
and Γ

𝑗
𝑖 = 𝑒𝑇𝑝 (𝜆𝑖+𝛿) 𝑗ℓ , ∀𝑗 ≥⌈𝑁−1

ℓ + 1
⌉
, otherwise. Note that for 𝜆𝑖 + 𝛿 ≥ 0, we have

𝑒𝑇𝑝 (𝜆𝑖+𝛿−𝜂) 𝑗ℓ ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝛿+𝜂) 𝑗 ℓ

and that

𝑒𝑇𝑝 (𝜆𝑖+𝛿−𝜂) ( ( 𝑗−1)ℓ+1) ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝛿+𝜂) ( ( 𝑗−1)ℓ+1)

if 𝜆𝑖 + 𝛿 < 0. Therefore, we have that
Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

≤ 𝑒𝑇𝑝 (𝜆𝑖+𝛿+2𝜂)ℓ inde-

pendently of the sign of 𝜆𝑖 + 𝛿 . Thus, by Theorem 5.1, we have

that #C 𝑗+1
𝑖 ≤

⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼+𝛿+2𝜂)ℓ

⌉
, ∀𝑗 ≥ ⌈𝑁−1

ℓ + 1
⌉
and every 𝑖 ∈

{1, . . . , 𝑑}. We conclude, by showing that the first
⌈𝑁−1

ℓ + 1
⌉ + 1

terms of the sum in the definition of 𝑏 go to zero and that#C 𝑗 ≤∏𝑑
𝑖=1

⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼+𝛿+2𝜂)ℓ

⌉
for all 𝑗 ≥ ⌈𝑁−1

ℓ + 1
⌉
, that9

𝑏 ≤ 1

𝑇𝑝 ℓ

𝑑∑
𝑖=1

log
⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼+𝛿+2𝜂)ℓ

⌉
.

9These steps are similar to those used in the proof of the entropy’s upper bound in
Theorem 4.13.

Also, because 𝜂 can be arbitrarily small, we have that

𝑏 ≤ 1

𝑇𝑝 ℓ

𝑑∑
𝑖=1

log
⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼+𝛿)ℓ

⌉
.

Finally, by choosing ℓ large enough, 𝑏 can get as close to10

𝑑∑
𝑖=1

max {𝜆𝑖 + 𝛼 + 𝛿, 0}

as desired.

Following analogous steps, we can prove a similar result for the

case when the system is known to be regular. To see this, note that,

under the regularity assumption, for every 𝜂 > 0 there exists 𝑁 ∈ N
such that 𝑒𝑇𝑝 (𝜆𝑖−𝜂)𝑡 ≤ ‖𝜙𝑡𝑣𝑖 ‖ ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂)𝑡 for all 𝑡 ≥ 𝑁 . Then, we

notice that for 𝜆𝑖 ≥ 0, we have 𝑒𝑇𝑝 (𝜆𝑖−𝜂) 𝑗 ℓ ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂) 𝑗 ℓ and

that 𝑒𝑇𝑝 (𝜆𝑖−𝜂) ( ( 𝑗−1)ℓ+1) ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂) ( ( 𝑗−1)ℓ+1) if 𝜆𝑖 < 0. Next,

we get the inequality
Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

≤ 𝑒𝑇𝑝 (𝜆𝑖+2𝜂)ℓ independently of the sign

of 𝜆𝑖 . Now, we replace this inequality in our previous argument to

get that

𝑏 ≤ 1

𝑇𝑝 ℓ

𝑑∑
𝑖=1

log
⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼)ℓ

⌉
,

and by choosing ℓ large enough, 𝑏 can get as close to∑𝑑
𝑖=1 max {𝜆𝑖 + 𝛼, 0} as desired. These results are summarized in

the next Corollary 5.2.

Corollary 5.2. Let 𝛿 > 0, 𝛼 ≥ 0, and ℓ ∈ N. If V𝑗 = V for all

𝑗 ∈ Z≥0, where V is a normal basis for the Oseledets’ filtration, then

𝑏 ≤ 1
𝑇𝑝 ℓ

∑𝑑
𝑖=1 log

⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼)ℓ

⌉
if the system is known to be regular

and 𝑏 ≤ 1
𝑇𝑝 ℓ

∑𝑑
𝑖=1 log

⌈
𝑒𝑇𝑝 (𝜆𝑖+𝛼+𝛿)ℓ

⌉
, otherwise. Furthermore, 𝑏 can

be made as close as desired to ℎest (𝛼, 𝐾) by choosing ℓ large enough
in case the system is known to be regular, or 𝑏 can be made as close as

desired to
∑𝑑
𝑖=1 max {𝜆𝑖 + 𝛼 + 𝛿, 0}, otherwise.

5.2 Finding
(V𝑗

)
𝑗 ∈Z≥0 Online

In many practical cases, a priori knowledge of a family
(V𝑗

)
𝑗 ∈Z≥0

that gives us an average data-rate close to the estimation entropy,

such as normal bases for the Oseledets’ filtration as in Corollary

5.2, is unrealistic. Recall that, because of the limit superior in the

Definition 4.3 of Lyapunov exponent, we need to know the entire

sequence (𝐴𝑛)𝑛∈N beforehand to calculate its exponents. Also, no-

tice that a similar thing happens to the Oseledets’ filtration. Further,

both Examples 4.6 and 4.10 should help making these claims clearer.

Fortunately, one can estimate
(V𝑗

)
𝑗 ∈Z≥0 by using the switching

signal. However, knowledge of the entire switching signal is also

unrealistic. In this Subsection, we assume that only the switching

signal’s restriction, from the beginning to the current moment, is

known and that the system is known to be regular. Based on this

new assumption, we show how to estimate the basisV𝑖 . This will

give us a causal algorithm to estimate this family and will allow us

to work under a more realistic set of hypotheses.

10This follows from the fact that 𝑥 ≤ 1
ℓ log

( �ℓ𝑥 �) ≤ 1
ℓ log

(
𝑒ℓ𝑥 + 1

)
< 𝑥 + log(2)

ℓ

if 𝑥 is positive, and 0 ≤ 1
ℓ log

( �ℓ𝑥 �) ≤ 1
ℓ log

(
2
)
if 𝑥 is negative.

8
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Theorem 5.3. Assume that (𝐴𝑛)𝑛∈N is regular. Let𝑄 𝑗 �
(
Φ

𝑗 Φ𝑗

) 1
2𝑗

for 𝑗 ∈ Z≥0 and let its eigenvalues be 𝑒𝜌𝑖 ( 𝑗) , where 𝑖 ∈ {1, . . . , 𝑑}
and 𝑒𝜌1 ( 𝑗) ≤ · · · ≤ 𝑒𝜌𝑑 ( 𝑗) . Also, let V𝑗 =

{
𝑣
𝑗
1, . . . , 𝑣

𝑗
𝑑

}
be an or-

thonormal basis that diagonalizes 𝑄 𝑗 , with an order induced by the

order on their corresponding eigenvalues 𝑒𝜌𝑖 ( 𝑗) . Then the average

data-rate of the algorithm from section 5.1 is upper bounded by∑𝑑
𝑖=1 max

{
𝛼 + 𝜆𝑖 + 1

𝑇𝑝 ℓ
, 0

}
, if the Lyapunov exponents are simple,

or
∑𝑑
𝑖=1 max

{
𝛼 + 𝜆𝑖 + log(

√
𝑑)+1

𝑇𝑝 ℓ
, 0

}
, otherwise.

Proof. Our goal is to find an upper bound for #C 𝑗
𝑖 for 𝑗 large

enough. For that purpose, we will use the upper bound obtained in

Theorem 5.1. So, we need to find upper bounds or expressions for∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘𝑣 𝑗+1𝑖 〉
��� and Γ 𝑗+1

𝑖

Γ 𝑗
𝑖

.

First, we show that 𝜆𝑖 = lim sup𝑗→∞ 1
𝑗 log

���Φ𝑗𝑣
𝑗
𝑖

���, which appear

in the definition of the algorithm from section 5.1 for 𝑖 ∈ {1, . . . , 𝑑},
are the Lyapunov exponents with multiplicity, and that they are

given by 𝜆𝑖 = lim𝑗→∞ 𝜌𝑖 ( 𝑗). To see that, notice that
���𝑄 𝑗𝑣

𝑗
𝑖

��� = 𝑒𝜌𝑖 ( 𝑗)

and that

𝜆𝑖 = lim sup
𝑗→∞

1

𝑗
log

���Φ𝑗𝑣
𝑗
𝑖

��� = lim sup
𝑗→∞

1

𝑗
log((𝑣 𝑗𝑖 )
Φ


𝑗 Φ𝑗𝑣
𝑗
𝑖 )1/2 =

lim sup
𝑗→∞

1

𝑗
log((𝑣 𝑗𝑖 )
𝑄

2𝑗
𝑗 𝑣

𝑗
𝑖 )1/2 = lim sup

𝑗→∞
𝜌𝑖 ( 𝑗),

where the second equality comes from the fact that the Euclidean

norm and the infinity norm are equivalent. Also, the last equal-

ity comes from the fact that any basis that diagonalizes 𝑄 𝑗 also

diagonalizes 𝑄
2𝑗
𝑗 .

As a consequence of regularity, by the third bullet of Lemma 4.12,

𝑄 𝑗 has a limit. Therefore, its eigenvalues, 𝑒𝜌𝑖 ( 𝑗) , have a limit as well.

Hence, we conclude that 𝜆𝑖 = lim𝑗→∞ 𝜌𝑖 ( 𝑗), because the limit on

the right exists.

Second, because the sequence is regular, we have that 𝑄 𝑗 con-

verges. We denote this limit by𝑄 � lim𝑗→∞𝑄 𝑗 . Because Lyapunov

exponents are simple, there exists 𝑁0 ∈ N such that for all 𝑗 ≥ 𝑁0

the eigenvalues of 𝑄 𝑗 are simple as well. Now, a symmetric matrix

with simple eigenvalues has a unique, up to a change of signs and

subject to the order indicated in the theorem statement, orthonor-

mal basis that diagonalizes it. This implies that for any 𝜂1 > 0, there

exists 𝑁1 ∈ N such that
∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
��� ≤ 1 + 𝜂1 for all 𝑗 ≥ 𝑁1

and 𝑖 ∈ {1, . . . , 𝑑}. To see this, denote by {𝑣1, . . . , 𝑣𝑑 } a basis that
diagonalizes𝑄 . Now, we can change the signs of

{
𝑣
𝑗
1, . . . , 𝑣

𝑗
𝑑

}
if nec-

essary, so that 𝑣
𝑗
𝑖 converges to 𝑣𝑖 , and notice that changing the sign

does not change the absolute value of the inner products mentioned

above. Because these are orthonormal bases, there exists 𝑁1 ∈ N
such that, for every 𝑖 ∈ {1, . . . , 𝑑}, we have |〈𝑣 𝑗

𝑘
, 𝑣

𝑗+1
𝑖 〉| ≤ 𝜂1/𝑑 if

𝑘 ≠ 𝑖 and |〈𝑣 𝑗
𝑘
, 𝑣

𝑗+1
𝑖 〉| ≤ 1 + 𝜂1/𝑑 if 𝑘 = 𝑖 , and we proved this claim.

Notice, however, that the inequalities
∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
��� ≤ √

𝑑 for

every 𝑖 ∈ {1, . . . , 𝑑} always hold, even without simplicity.

Third, again because of regularity, for 𝜂2 > 0 such that 𝜆𝑖 + 𝜂2 <
0 for all 𝜆𝑖 < 0, but otherwise arbitrary11, there exists 𝑁2 ∈ N
such that for all 𝑗 ≥ 𝑁2 and all 𝑖 ∈ {1, . . . , 𝑑} we have that 𝜆𝑖 −
𝜂2 ≤ 𝜌𝑖 ( 𝑗) ≤ 𝜆𝑖 + 𝜂2. Thus, Γ

𝑗
𝑖 � max𝑘∈{0,...,ℓ−1}

���Φ𝑗ℓ−𝑘𝑣
𝑗
𝑖

��� =

max𝑘∈{0,...,ℓ−1}
���𝑒𝜌𝑖 ( 𝑗ℓ−𝑘)���. Then, we arrive at the inequalities

𝑒𝑇𝑝 (𝜆𝑖−𝜂2) 𝑗 ℓ ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂2) 𝑗 ℓ , if 𝜆𝑖 ≥ 0, and

𝑒𝑇𝑝 (𝜆𝑖−𝜂2) ( ( 𝑗−1)ℓ+1) ≤ Γ
𝑗
𝑖 ≤ 𝑒𝑇𝑝 (𝜆𝑖+𝜂2) ( ( 𝑗−1)ℓ+1) , if 𝜆𝑖 < 0. Then,

Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

≤ 𝑒𝑇𝑝 (𝜆𝑖+2𝜂2)ℓ for 𝑗 ≥ 𝑁2 and 𝑖 ∈ {1, . . . , 𝑑}.
Now, recall the definition of average data-rate

𝑏 = lim sup
𝑡→∞

1

𝑇𝑝𝑡ℓ

𝑡∑
𝑗=0

𝑑∑
𝑖=1

log(#C 𝑗
𝑖 ) .

Denote 𝑁 � max {𝑁1, 𝑁2}. For 𝑗 ≥ 𝑁 we have that

#C 𝑗
𝑖 ≤

⌈
𝑒𝑇𝑝 (𝛼+𝜆𝑖+2𝜂2)ℓ (1 + 𝜂1)

⌉
.

Further, define 𝑀 =
∑𝑁−1

𝑗=0
∑𝑑
𝑖=1 log

(
#C𝑖

𝑗

)
. We can upper-bound

the average data-rate by

𝑏 ≤ lim sup
𝑡→∞

1

𝑇𝑝𝑡ℓ

(
𝑀 +

𝑡∑
𝑘=𝑁

𝑑∑
𝑖=1

log(
⌈
𝑒𝑇𝑝 (𝛼+𝜆𝑖+2𝜂2)ℓ (1 + 𝜂1)

⌉
)
)
.

Notice that log(�𝑥�) ≤ max {log(𝑥) + 1, 0}. To see that, we study
two cases. If 𝑥 ≥ 1, then 2𝑥 ≥ 𝑥 +1 and log(2𝑥) = log(2) + log(𝑥) =
1 + log(𝑥) ≥ log(𝑥 + 1) ≥ log(�𝑥�). If 𝑥 < 1, then log(�𝑥�) = 0.
Therefore, we can derive the upper bound

log(
⌈
𝑒𝑇𝑝 (𝛼+𝜆𝑖+2𝜂2)ℓ (1 + 𝜂1)

⌉
) ≤

max
{
𝑇𝑝 (𝛼 + 𝜆𝑖 + 2𝜂2)ℓ (1 + 𝜂1) + 1, 0

}
.

Thus,

𝑏 ≤ lim sup
𝑡→∞

1

𝑇𝑝𝑡ℓ

(
𝑀 + (𝑡 − 𝑁 )

𝑑∑
𝑖=1

max
{
𝑇𝑝 (𝛼 + 𝜆𝑖 + 2𝜂2)ℓ+

log(1 + 𝜂1) + 1, 0
} )

and since 𝑀 and 𝑁 are constants, we conclude that

𝑏 ≤
𝑑∑
𝑖=1

max

{
𝛼 + 𝜆𝑖 + 2𝜂2 +

log(1 + 𝜂1)
𝑇𝑝 ℓ

+ 1

𝑇𝑝 ℓ
, 0

}
.

Since 𝜂1 > 0 and 𝜂2 > 0 can be chosen to be arbitrarily small, we

have that

𝑏 ≤
𝑑∑
𝑖=1

max

{
𝛼 + 𝜆𝑖 + 1

𝑇𝑝 ℓ
, 0

}
.

Finally, if we drop the simplicity assumption, we could replace

log(1 + 𝜂1) by log(
√
𝑑) and obtain

𝑏 ≤
𝑑∑
𝑖=1

max

{
𝛼 + 𝜆𝑖 + log(

√
𝑑) + 1

𝑇𝑝 ℓ
, 0

}
.

11Notice that 𝜂2 can be chosen to be as small as desired.
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and, therefore, in both cases, by choosing ℓ sufficiently large, the

upper bound on 𝑏 can be made arbitrarily close to the estimation

entropy ℎest (𝛼, 𝐾) as given by the last statement of Theorem 4.13.

�

Remark 5.1. It is important to remark what still holds without reg-

ularity and simplicity. First, it is always true that
∑𝑑
𝑘=1

���〈𝑣 𝑗𝑘 , 𝑣 𝑗+1𝑖 〉
��� ≤√

𝑑 for every 𝑖 ∈ {1, . . . , 𝑑}. Second, without regularity, we have that
for every 𝜂2 > 0, there exists 𝑁 ∈ N such that

Γ 𝑗+1
𝑖

Γ 𝑗
𝑖

≤ 𝑒𝑇𝑝 (𝜆𝑖+𝛿+2𝜂2)ℓ

for all for 𝑗 ≥ 𝑁 , where 𝛿 > 0 is the same that appears in the definition

of Γ
𝑗
𝑖 in the algorithm from section 5.1. Furthermore, from these in-

equalities, we conclude that #C 𝑗
𝑖 ≤

⌈
𝑒𝑇𝑝 (𝛼+𝜆𝑖+𝛿+2𝜂2)ℓ√𝑑

⌉
for 𝑗 ≥ 𝑁

and 𝑖 ∈ {1, . . . , 𝑑}. Using this upper bound for#C 𝑗
𝑖 and following the

steps of the proof above, we conclude that

𝑏 ≤
𝑑∑
𝑖=1

max

{
(𝛼 + 𝜆𝑖 + 𝛿) + log(

√
𝑑) + 1

𝑇𝑝 ℓ
, 0

}
.

Observe that these 𝜆𝑖 ’s aren’t the Lyapunov exponents with multiplic-

ity. These 𝜆𝑖 ’s are the upper growth rates of the singular values of 𝑄 𝑗

as 𝑗 goes to infinity, see e.g. Chapter 6 of [2]. Also, it is well-known
that these 𝜆𝑖 ’s are smaller than or equal to the Lyapunov exponents

when we don’t have regularity. For that reason, this algorithm might

work at an average data-rate smaller than the entropy’s upper bound

obtained in Theorem 4.13.

Furthermore, note that, without the regularity assumption, we

need to have a priori knowledge either of the 𝜆𝑖 ’s, or an upper bound
to them. Both hypothesis are unreasonable if we want to have a

completely causal algorithm, since the 𝜆′𝑖 s depend on the entire

sequence
(
𝐴𝑛

)
𝑛∈N.

Another important observation is that the simplicity of the Lya-

punov exponents is a generic property, and we expect that most

systems will have it. See e.g. Chapter 8 of [20].

6 SIMULATION RESULTS

In this section, we implement the algorithm from section 5.1 us-

ing the family of bases constructed in Theorem 5.3 to reconstruct

the state of the Markov Jump Linear System in Example 3.1. It is

important to mention that such systems, although random, have

realizations that are regular with probability 1, see [21]. Also, we
refer to that work for results concerning more general sufficient

conditions for regularity.

Example 6.1 (Example 3.1 revisited). Since the realizations of

the system presented in Example 3.1 are regular with probabil-

ity 1, the upper bound found in Example 4.14 was actually the

real value of the estimation entropy for our system, i.e. ℎest (𝛼, 𝐾) =
max

{
1
2 log(0.99) + 𝛼, 0

}+max {𝛼, 0} nats/sample or, equivalently,

ℎest (𝛼, 𝐾) = log2 (𝑒)
(
max

{
1
2 log(0.99) + 𝛼, 0

} +max {𝛼, 0} )
bits/sample with probability 1. We can now apply the previous

algorithm to a randomly chosen realization of our example sys-

tem. The parameters chosen were 𝛼 = 0.05, 𝜖 = 0.01, and the

time horizon for our simulation was 140 time units. Further, 𝐾 =

[0.5, 1.5] × [1.5, 2.5], 𝑥 (0) = (1.102, 2.104)
. Notice that, for this
𝛼 , we get ℎest (0.05, 𝐾) ≈ 0.137 bits/sample.

One can see the simulation results of the estimation error in

Figure 1 for block lengths ℓ = 1 in blue, ℓ = 3 in red, and ℓ = 5 in

yellow. We can see that the error is upper bounded by the purple

curve 𝜖𝑒−𝛼𝑡/2 for all values of ℓ . Further, the empirical average

data-rate, i.e. 1
𝑡ℓ

∑𝑡
𝑗=1 log

(C 𝑗
𝑖

)
, is portrayed in Figure 2, where we

can see that the data rate decreases as the block length increases, as

expected. Nonetheless, the average data-rate is far from the upper

bound derived in Theorem 5.3. That happens because the result in

Theorem 5.3 is only asymptotic.
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Fig. 1. Evolution of error for several block lengths
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Fig. 2. Evolution of the empirical average data-rate for several block lengths

7 CONCLUSION AND FUTURE WORKS

In this paper, we addressed the problem of designing a quantization

scheme for exponentially fast state reconstruction that operates at

an average data-rate arbitrarily close to the estimation entropy for

regular switched systems. Furthermore, we showed how to make

the algorithm work only using information that is known up to

the current time. Moreover, we showed that our algorithm works

even if the underlying system is not regular. As future research

directions, we propose to use a modified version of the present

algorithm to perform state estimation for nonlinear systems with

minimum average data-rate. Also, we plan on addressing the control

of switched linear systems with the optimal data rate as well.

10
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